File:An infinitely differentiable function which is not analytic illustration.png

From Wikimedia Commons, the free media repository
Jump to navigation Jump to search

An_infinitely_differentiable_function_which_is_not_analytic_illustration.png (500 × 146 pixels, file size: 6 KB, MIME type: image/png)

Captions

Captions

Add a one-line explanation of what this file represents

Summary

[edit]
File:Expinvsq5.svg is a vector version of this file. It should be used in place of this PNG file when not inferior.

File:An infinitely differentiable function which is not analytic illustration.png → File:Expinvsq5.svg

For more information, see Help:SVG.

In other languages
Alemannisch  Bahasa Indonesia  Bahasa Melayu  British English  català  čeština  dansk  Deutsch  eesti  English  español  Esperanto  euskara  français  Frysk  galego  hrvatski  Ido  italiano  lietuvių  magyar  Nederlands  norsk bokmål  norsk nynorsk  occitan  Plattdüütsch  polski  português  português do Brasil  română  Scots  sicilianu  slovenčina  slovenščina  suomi  svenska  Tiếng Việt  Türkçe  vèneto  Ελληνικά  беларуская (тарашкевіца)  български  македонски  нохчийн  русский  српски / srpski  татарча/tatarça  українська  ქართული  հայերեն  বাংলা  தமிழ்  മലയാളം  ไทย  한국어  日本語  简体中文  繁體中文  עברית  العربية  فارسی  +/−
New SVG image

Transferred from en.wikipedia to Commons by Maksim.

The original description page was here. All following user names refer to en.wikipedia.
 
This diagram was created with MATLAB.
Description An infinitely differentiable function which is not analytic illustration
Date
Source Own work
Author Mathbot
Permission
(Reusing this file)
Public domain I, the copyright holder of this work, release this work into the public domain. This applies worldwide.
In some countries this may not be legally possible; if so:
I grant anyone the right to use this work for any purpose, without any conditions, unless such conditions are required by law.
Source code
InfoField

MATLAB code

function main()

   thickness1=2; thickness2=1.5; arrowsize=10; arrow_type=2; ball_rad=0.03;
   blue=[0, 0, 1]; black=[0 0 0]; fontsize=floor(20); dist=0.01;
   
   a=-4; b=4;
   h=0.01;
   X=a:h:b;
   Y=zeros(length(X), 1);
   for i=1:length(X)
      x=X(i);
      if x == 0 Y(i)=0;
      else 
	 Y(i)=exp(-1/x^2);
      end
   end

   
figure(1);  clf; hold on; axis equal; axis off
arrow([a 0], [b+0.2, 0], thickness2, arrowsize, pi/8,arrow_type, [0, 0, 0])
arrow([0 -0.3], [0 2.*max(Y)], thickness2, arrowsize, pi/8,arrow_type, [0, 0, 0])
plot(X, Y, 'linewidth', thickness1, 'color', blue);
plot(X, 0*Y+1, 'linewidth', thickness2/1.5, 'color', black, 'linestyle', '--');
arrow([b+0.1 0], [b+0.2, 0], thickness2, arrowsize, pi/8,arrow_type, [0, 0, 0])

ball(0, 0, ball_rad, blue); place_text_smartly(0, fontsize, 5, dist, '0');
ball(0, 1, ball_rad, black); place_text_smartly(sqrt(-1), fontsize, 5, dist, '1');

saveas(gcf, 'An_infinitely_differentiable_function_which_is_not_analytic_illustration.eps', 'psc2')

function place_text_smartly (z, fs, pos, d, tx)
 p=cos(pi/4)+sqrt(-1)*sin(pi/4);
 z = z + p^pos * d * fs; 
 shiftx=0.0003;
 shifty=0.002;
 x = real (z); y=imag(z); 
 H=text(x+shiftx*fs, y+shifty*fs, tx); set(H, 'fontsize', fs, 'HorizontalAlignment', 'c', 'VerticalAlignment', 'c')


function ball(x, y, r, color)
   Theta=0:0.1:2*pi;
   X=r*cos(Theta)+x;
   Y=r*sin(Theta)+y;
   H=fill(X, Y, color);
   set(H, 'EdgeColor', color);


function arrow(start, stop, thickness, arrowsize, sharpness, arrow_type, color)

   
%  draw a line with an arrow at the end
%  start is the x,y point where the line starts
%  stop is the x,y point where the line stops
%  thickness is an optional parameter giving the thickness of the lines   
%  arrowsize is an optional argument that will give the size of the arrow 
%  It is assumed that the axis limits are already set
%  0 < sharpness < pi/4 determines how sharp to make the arrow
%  arrow_type draws the arrow in different styles. Values are 0, 1, 2, 3.
   
%       8/4/93    Jeffery Faneuff
%       Copyright (c) 1988-93 by the MathWorks, Inc.
%       Modified by Oleg Alexandrov 2/16/03

   
   if nargin <=6
      color=[0, 0, 0];
   end
   
   if (nargin <=5)
      arrow_type=0;   % the default arrow, it looks like this: ->
   end
   
   if (nargin <=4)
      sharpness=pi/4; % the arrow sharpness - default = pi/4
   end

   if nargin<=3
      xl = get(gca,'xlim');
      yl = get(gca,'ylim');
      xd = xl(2)-xl(1);            
      yd = yl(2)-yl(1);            
      arrowsize = (xd + yd) / 2;   % this sets the default arrow size
   end

   if (nargin<=2)
      thickness=0.5; % default thickness
   end
   
   
   xdif = stop(1) - start(1);
   ydif = stop(2) - start(2);

   if (xdif == 0)
      if (ydif >0) 
	 theta=pi/2;
      else
	 theta=-pi/2;
      end
   else
      theta = atan(ydif/xdif);  % the angle has to point according to the slope
   end

   if(xdif>=0)
      arrowsize = -arrowsize;
   end

   if (arrow_type == 0) % draw the arrow like two sticks originating from its vertex
      xx = [start(1), stop(1),(stop(1)+0.02*arrowsize*cos(theta+sharpness)),NaN,stop(1),...
	    (stop(1)+0.02*arrowsize*cos(theta-sharpness))];
      yy = [start(2), stop(2), (stop(2)+0.02*arrowsize*sin(theta+sharpness)),NaN,stop(2),...
	    (stop(2)+0.02*arrowsize*sin(theta-sharpness))];
      plot(xx,yy, 'LineWidth', thickness, 'color', color)
   end

   if (arrow_type == 1)  % draw the arrow like an empty triangle
      xx = [stop(1),(stop(1)+0.02*arrowsize*cos(theta+sharpness)), ...
	    stop(1)+0.02*arrowsize*cos(theta-sharpness)];
      xx=[xx xx(1) xx(2)];
      
      yy = [stop(2),(stop(2)+0.02*arrowsize*sin(theta+sharpness)), ...
	    stop(2)+0.02*arrowsize*sin(theta-sharpness)];
      yy=[yy yy(1) yy(2)];

      plot(xx,yy, 'LineWidth', thickness, 'color', color)
      
%     plot the arrow stick
      plot([start(1) stop(1)+0.02*arrowsize*cos(theta)*cos(sharpness)], [start(2), stop(2)+ ...
		    0.02*arrowsize*sin(theta)*cos(sharpness)], 'LineWidth', thickness, 'color', color)
      
   end
   
   if (arrow_type==2) % draw the arrow like a full triangle
      xx = [stop(1),(stop(1)+0.02*arrowsize*cos(theta+sharpness)), ...
	    stop(1)+0.02*arrowsize*cos(theta-sharpness),stop(1)];
      
      yy = [stop(2),(stop(2)+0.02*arrowsize*sin(theta+sharpness)), ...
	    stop(2)+0.02*arrowsize*sin(theta-sharpness),stop(2)];
      
%     plot the arrow stick
      plot([start(1) stop(1)+0.01*arrowsize*cos(theta)], [start(2), stop(2)+ ...
		    0.01*arrowsize*sin(theta)], 'LineWidth', thickness, 'color', color)
      H=fill(xx, yy, color);% fill with black
      set(H, 'EdgeColor', 'none')

   end

   if (arrow_type==3) % draw the arrow like a filled 'curvilinear' triangle
      curvature=0.5; % change here to make the curved part more curved (or less curved)
      radius=0.02*arrowsize*max(curvature, tan(sharpness));
      x1=stop(1)+0.02*arrowsize*cos(theta+sharpness);
      y1=stop(2)+0.02*arrowsize*sin(theta+sharpness);
      x2=stop(1)+0.02*arrowsize*cos(theta)*cos(sharpness);
      y2=stop(2)+0.02*arrowsize*sin(theta)*cos(sharpness);
      d1=sqrt((x1-x2)^2+(y1-y2)^2);
      d2=sqrt(radius^2-d1^2);
      d3=sqrt((stop(1)-x2)^2+(stop(2)-y2)^2);
      center(1)=stop(1)+(d2+d3)*cos(theta);
      center(2)=stop(2)+(d2+d3)*sin(theta);

      alpha=atan(d1/d2);
      Alpha=-alpha:0.05:alpha;
      xx=center(1)-radius*cos(Alpha+theta);
      yy=center(2)-radius*sin(Alpha+theta);
      xx=[xx stop(1) xx(1)];
      yy=[yy stop(2) yy(1)];


%     plot the arrow stick
      plot([start(1) center(1)-radius*cos(theta)], [start(2), center(2)- ...
		    radius*sin(theta)], 'LineWidth', thickness, 'color', color);

      H=fill(xx, yy, color);% fill with black
      set(H, 'EdgeColor', 'none')

   end
date/time username edit summary
04:41, 23 November 2005 en:User:Oleg Alexandrov (fix bug)
04:34, 23 November 2005 en:User:Oleg Alexandrov (<span class="autocomment"><a href="/wiki/Image:An_infinitely_differentiable_function_which_is_not_analytic_illustration.png#Source_code" title="Image:An infinitely differentiable function which is not analytic illustration.png">→</a>Source code -</span> lang)
04:33, 23 November 2005 en:User:Mathbot (source_code)
04:32, 23 November 2005 en:User:Oleg Alexandrov (format)
04:29, 23 November 2005 en:User:Oleg Alexandrov

Licensing

[edit]
Public domain I, the copyright holder of this work, release this work into the public domain. This applies worldwide.
In some countries this may not be legally possible; if so:
I grant anyone the right to use this work for any purpose, without any conditions, unless such conditions are required by law.

Original upload log

[edit]

Legend: (cur) = this is the current file, (del) = delete this old version, (rev) = revert to this old version.

Click on date to download the file or see the image uploaded on that date.

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current16:47, 18 March 2006Thumbnail for version as of 16:47, 18 March 2006500 × 146 (6 KB)Maksim (talk | contribs)La bildo estas kopiita de wikipedia:en. La originala priskribo estas: == Licensing == {{PD-self}} ==Source code (Matlab)== <pre> <nowiki> function main() thickness1=2; thickness2=1.5; arrowsize=10; arrow_type=2; ball_rad=0.03; blue=[0, 0, 1];

There are no pages that use this file.

File usage on other wikis

The following other wikis use this file: