File:Cr6spiral.png
From Wikimedia Commons, the free media repository
Jump to navigation
Jump to search
Size of this preview: 600 × 600 pixels. Other resolutions: 240 × 240 pixels | 480 × 480 pixels | 1,000 × 1,000 pixels.
Original file (1,000 × 1,000 pixels, file size: 22 KB, MIME type: image/png)
File information
Structured data
Captions
Summary
[edit]DescriptionCr6spiral.png |
English: 2D view of critical orbit of c = i*0.21687214+0.37496784 for complex quadratic polynomial. It tends to weakly attracting fixed point zf with abs(multiplier(zf)=0.99993612384259 . Point c is near root of period 6 component of Mandelbrot set. Forward orbit of one point ( critical point) was coloured in that way, that it shows 6 arms of a rotated 6-arm star = spiral. Note that critical orbit is modelled by period 6 repelling orbit , which is inside Julia set.
After i = 88602 iterations forward orbit of critical point reaches trap: circle with radius = PixelWidth around fixed point. c = 0.3749678400000000+0.2168721400000000*I multiplier m(c) = 0.4993345401687128+0.8663355369994206*I Internal radius r(m) = 0.9999361207965108 period = 1 internal angle t(m) = 0.1667830755386747 in turns t(m) - 1/6 = 0.0001164088720081 = 0.0006979657356246 * t(m) |
Date | |
Source | Own work |
Author | Adam majewski |
Other versions |
|
This plot was created with Gnuplot by n.
Licensing
[edit]I, the copyright holder of this work, hereby publish it under the following license:
This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.
- You are free:
- to share – to copy, distribute and transmit the work
- to remix – to adapt the work
- Under the following conditions:
- attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
Summary
[edit]// program by marcm200 coefficients read from input file spiral6.txt degree 2 coefficient = ( +1.0000000000000000 +0.0000000000000000*i) degree 0 coefficient = ( -0.3749678400000000 +0.2168721400000000*i) Input polynomial p(z)=(1+0i)*z^2+(-0.3749678399999999967+0.21687213999999999103i) 1 critical points found cp#0: 0,0 . It's critical orbit is bounded and enters cycle #0 length=1 and it's stability = |multiplier|=0.66182 =attractive internal angle = 0.43301199486547292672 cycle = { -0.30202715286803538675,0.13520249234983439113 ; }
// progrm m-describe by Claude the input point was +3.7496784e-01 + +2.1687213999999999e-01 i the point didn't escape after 10000 iterations nearby hyperbolic components to the input point: - a period 1 cardioid with nucleus at +0e+00 + +0e+00 i the component has size 1.00000e+00 and is pointing west the atom domain has size 0.00000e+00 the atom domain coordinates of the input point are -nan + -nan i the atom domain coordinates in polar form are nan to the east the nucleus is 4.33168e-01 to the west-south-west of the input point the input point is interior to this component at radius 9.99936e-01 and angle 0.166783075538674747 (in turns) the multiplier is +4.99335e-01 + +8.66336e-01 i a point in the attractor is +2.49664e-01 + +4.33167e-01 i external angles of this component are: .(0) .(1)
Maxima CAS src code
[edit]/* this is batch file for Maxima 5.13.0 http://maxima.sourceforge.net/ tested in wxMaxima 0.7.1 using draw package ( interface to gnuplot ) to draw on the screen draws critical orbit = orbit of critical point Adam Majewski fraktal.republika.pl with help of Mario Rodriguez Riotorto http://www.telefonica.net/web2/biomates */ /* */ c:%i*0.21687214+0.37496784; /* define function ( map) for dynamical system z(n+1)=f(zn,c) */ f(z,c):=expand (z*z + c); /* expand speed up computations and fix the stack overflow problem. Robert Dodier */ /* maximal number of iterations */ iMax:100000; /* to big couses bind stack overflow */ EscapeRadius:10; /* define z-plane ( dynamical ) */ zxMin:-0.8; zxMax:0.2; zyMin:-0.2; zyMax:0.8; /* resolution is proportional to number of details and time of drawing */ iXmax:1000; iYmax:1000; /* compute critical point */ zcr:rhs(solve(diff(f(z,c),z,1))); /* save critical point to 2 lists */ xcr:makelist (realpart(zcr), i, 1, 1); /* list of re(z) */ ycr:makelist (imagpart(zcr), i, 1, 1); /* list of im(z) */ /* compute attracting fixed point */ fixed:solve([z=f(z,c)], [z]); zfa:if cabs(2*rhs(fixed[1]))<1 then rhs(fixed[1]) else rhs(fixed[2]); /* save attracting fixed point to 2 lists */ xfa:makelist (realpart(zfa), i, 1, 1); /* list of re(z) */ yfa:makelist (imagpart(zfa), i, 1, 1); /* list of im(z) */ /* ------------------- compute forward orbit of critical point in 6 subsets ----------*/ z:zcr; /* first point */ for i:1 thru 6 step 1 do block ( z:f(z,c), if i=1 then orbit1:[z] elseif i=2 then orbit2:[z] elseif i=3 then orbit3:[z] elseif i=4 then orbit4:[z] elseif i=5 then orbit5:[z] elseif i=6 then orbit6:[z] ); for i:6 thru iMax step 1 do block ( z:f(z,c), if abs(z)>EscapeRadius then exit(i) else ( j:mod(i,6), if j=0 then orbit1:endcons(z,orbit1) elseif j=1 then orbit2:endcons(z,orbit2) elseif j=2 then orbit3:endcons(z,orbit3) elseif j=3 then orbit4:endcons(z,orbit4) elseif j=4 then orbit5:endcons(z,orbit5) elseif j=5 then orbit6:endcons(z,orbit6) ) ); /* draw reversed orbit of beta using draw package */ load(draw); draw2d( title= concat(" dynamical plane for f(z,c):=z*z+",string(c)), user_preamble = "set key outside top", file_name = "cr6spiral", terminal = 'png, pic_width = iXmax, pic_height = iYmax, /* yrange = [zyMin,zyMax], xrange = [zxMin,zxMax], */ xlabel = "Z.re ", ylabel = "Z.im", point_type = filled_circle, points_joined = false, point_size = 0.8, key = "critical point", color =magenta, points(xcr,ycr), point_size = 0.2, color =red, key = "1-spiral of critical orbit", points(map (realpart,orbit1),map (imagpart,orbit1)), color =orange, key = "2-spiral of critical orbit", points(map (realpart,orbit2),map (imagpart,orbit2)), color =yellow, key = "3-spiral of critical orbit", points(map (realpart,orbit3),map (imagpart,orbit3)), color =green, key = "4-spiral of critical orbit", points(map (realpart,orbit4),map (imagpart,orbit4)), color =cyan, key = "5-spiral of critical orbit", points(map (realpart,orbit5),map (imagpart,orbit5)), color =blue, key = "6-spiral of critical orbit", points(map (realpart,orbit6),map (imagpart,orbit6)), point_size = 0.8, key = "attracting fixed point", color =black, points(xfa,yfa) );
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 19:40, 17 August 2020 | 1,000 × 1,000 (22 KB) | Soul windsurfer (talk | contribs) | Uploaded own work with UploadWizard |
You cannot overwrite this file.