File:Critical orbit 3d.png
Original file (2,000 × 1,000 pixels, file size: 19 KB, MIME type: image/png)
Captions
Summary
[edit]DescriptionCritical orbit 3d.png |
English: 3D view of critical orbit of c = i*0.21687214+0.37496784 for complex quadratic polynomial. It tends to weakly attracting fixed point zf with abs(multiplier(zf)=0.99993612384259 . Point c is near root of period 6 component of Mandelbrot set.
Polski: Trójwymiarowy widok orbity punktu krytycznego dla fc(z)=z*z+c. Punkt c jest położonego tuż przy granicy zbioru Mandelbrota. Orbita punktu krytycznego dąży do słabo przyciągającego punktu stałego. |
Date | |
Source |
Own work by uploader in Maxima and Gnuplot This plot was created with Gnuplot by n. |
Author | Adam majewski |
Other versions |
|
Long description
[edit]This image shows how changes orbit of critical point
for complex quadratic polynomial
Here parameter is constant :
It is in period 1 component, near root of period 6 component of Mandelbrot set.
Axes of three dimensional Cartesian coordinate system :
- axis x is real part of complex variable
- axis y is imaginary part of complex variable
- axis z is number of iteration ( integer number )
Note that axis z is different thing that complex variable
XY complex plane is dynamical plane of complex quadratic polynomial.
Iterations :
- ( blue point )
- ( red point)
- ( red point)
- ...
- ( red point)
This image showes that orbit of critical point tends to weakly attracting fixed point.
Maxima source code
[edit]/* this is batch file for Maxima 5.13.0 http://maxima.sourceforge.net/ tested in wxMaxima 0.7.1 using draw package ( interface to gnuplot ) to draw on the screen draws critical orbit = orbit of critical point */ c:%i*0.21687214+0.37496784; /* define function ( map) for dynamical system z(n+1)=f(zn,c) */ f(z,c):=expand (z*z + c); /* expand speed up computations and fix the stack overflow problem. Robert Dodier */ /* maximal number of iterations */ iMax:100000; /* to big couses bind stack overflow */ EscapeRadius:10; /* define z-plane ( dynamical ) */ zxMin:-0.8; zxMax:0.2; zyMin:-0.2; zyMax:0.8; /* resolution is proportional to number of details and time of drawing */ iXmax:2000; iYmax:1000; /* compute critical point */ zcr:rhs(solve(diff(f(z,c),z,1))); /* save critical point to 2 lists */ xcr:makelist (realpart(zcr), i, 1, 1); /* list of re(z) */ ycr:makelist (imagpart(zcr), i, 1, 1); /* list of im(z) */ /* ------------------- compute forward orbit of critical point ----------*/ z:zcr; /* first point */ orbit:[z]; for i:1 thru iMax step 1 do block ( z:f(z,c), if abs(z)>EscapeRadius then return(i) else orbit:endcons(z,orbit) ); /*-------------- save orbit to draw it later on the screen ----------------------------- */ /* save the z values to 2 lists */ xx:makelist (realpart(f(zcr,c)), i, 1, 1); /* list of re(z) */ yy:makelist (imagpart(f(zcr,c)), i, 1, 1); /* list of im(z) */ zz:makelist (1, i, 1, 1); /* list of iterations */ for i:2 thru length(orbit) step 1 do block ( xx:cons(realpart(orbit[i]),xx), yy:cons(imagpart(orbit[i]),yy), zz:cons(i,zz) ); /* drawing procedures */ load(draw);/* draw package by Mario Rodriguez Riotorto http://riotorto.users.sourceforge.net/gnuplot/ archive copy at the Wayback Machine */ draw3d( file_name = "critical_orbit_3d", terminal = 'png, pic_width = iXmax, pic_height = iYmax, columns = 1, title= concat(""), user_preamble = "set grid", xlabel = "Z.re ", ylabel = "Z.im", zlabel ="iteration", point_type = filled_circle, /*key = "critical point",*/ color =blue, points_joined = false, points(xcr,ycr,[0]), points_joined = false, color =red, point_size = 0.5, points(xx,yy,zz) );
Licensing
[edit]- You are free:
- to share – to copy, distribute and transmit the work
- to remix – to adapt the work
- Under the following conditions:
- attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License.http://www.gnu.org/copyleft/fdl.htmlGFDLGNU Free Documentation Licensetruetrue |
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 10:07, 18 January 2009 | 2,000 × 1,000 (19 KB) | Soul windsurfer (talk | contribs) | {{Information |Description={{en|1=3D view of critical orbit of c:%i*0.21687214+0.37496784 for complex quadratic polynomial. It tends to weakly attracting point near root of period 6 component.}} {{pl|1=Trójwymiarowy widok orbity punktu krytycznego dla fc |
You cannot overwrite this file.
File usage on Commons
The following 8 pages use this file:
- File:Cr6spiral.png
- File:Cr6spiral3d.png
- File:Cr orbit 3.png
- File:Critical Orbit 0;3,2,1000,1....png
- File:Critical Orbit for Golden Mean Quadratic Julia set.svg
- File:Critical orbit f(z) = z*z+c and c=-0.749413589136570+0.015312826507689*i.png
- File:Julia set for f(z) = z*z + 0.3749678400000000 +0.2168721400000000*i with critical orbits and external rays.png
- File:Parabolic critical orbit for internal angle one fifth.png
File usage on other wikis
The following other wikis use this file:
- Usage on el.wikipedia.org
- Usage on en.wikipedia.org
- Usage on en.wikibooks.org
- Usage on es.wikipedia.org
- Usage on nl.wikipedia.org
- Usage on pl.wikipedia.org