File:Fatou componenets4.jpg

From Wikimedia Commons, the free media repository
Jump to navigation Jump to search

Original file (2,000 × 2,000 pixels, file size: 233 KB, MIME type: image/jpeg)

Captions

Captions

Add a one-line explanation of what this file represents

Summary

[edit]
Description Filled Julia set with marked components ( color) and centers of components ( black rectangle). Period = 4 .
Source Own work
Author Adam majewski

Long desciption

[edit]

This image shows dynamical plane for f(z)=z*z + 0.281+0.533*i. There are 2 sets :

  • Julia set ( boundary of filled Julia set)
  • Fatou set, which consists of :
    • basin of attraction of infinity ( light magenta points)
    • basin of attraction of finite attractor ( points in 4 colors except white). This basin consists of infinitely many components

In this program period is set manually ( to do ).

Algorithm of coloring comonents is described by E Demidov:

color of component=last_iteration % period[1]

C source code

[edit]

It is a console C program ( one file) It can be compiled under :

  • windows ( gcc thru Dev-C++ )
  • linux and mac using gcc :
gcc main.c -lm

it creates a.out file. Then run it :

./a.out

It creates ppm file in program directory. Use file viewer to see it.

 /* 
 c console program:
 1. draws components of Filled-in Julia set for Fc(z)=z*z +c
 using   escape time
 it works except GivePeriod
 -------------------------------         
 2. technic of creating ppm file is  based on the code of Claudio Rocchini
 http://en.wikipedia.org/wiki/Image:Color_complex_plot.jpg
 create 24 bit color graphic file ,  portable pixmap file = PPM 
 see http://en.wikipedia.org/wiki/Portable_pixmap
 to see the file use external application ( graphic viewer)
 */
 #include <stdio.h>
 #include <stdlib.h> /* for ISO C Random Number Functions */
 #include <math.h>
 /*  gives sign of number */
 double sign(double d)
 {
   if (d<0)
    {return -1.0;}
    else {return 1.0;};
 }
 void GiveColorFromList6(int i ,unsigned char c[])
 { /*  */
  switch( i){
   case 0: {
      c[0] = 210;
      c[1] = 0;
      c[2] = 0;
       break;
    };
   case 1: {
      c[0] = 0 ;
      c[1] = 0;
      c[2] = 255;
       break;
    };
   case 2: {
      c[0] = 0;
      c[1] = 255;
      c[2] = 0;
       break;
    };
   case 3: {
      c[0] = 0;
      c[1] = 255 ;
      c[2] = 255;
       break;
    };
   case 4: {
      c[0] = 255;
      c[1] = 0;
      c[2] = 255;
       break;
    };
   case 5: {
      c[0] = 255;
      c[1] = 0;
      c[2] = 255 ;
       break;
    };
   case 6: {
      c[0] = 164;
      c[1] = 136;
      c[2] = 88 ;
       break;
    }; 
   default: {
      c[0] = 100;
      c[1] = 100;
      c[2] = 0;
       break;
     }
   }
 } 
 /* ----------------------*/
 int main()
 {   // 4: -0.15652016683376e+000	-1.03224710892283;  0.28227139076691e+000	-0.53006061757853
 // 4: c=0.281+0.533, AR2=0.001, ER2=8*8, 
 //3: -0.12256116687665e+000	-0.74486176661974e
 // 2: -1
 // 1: 0.4*i
 const double Cx=0.281,
              Cy=0.533;
 /* screen coordinate = coordinate of pixels */      
 int period=4,
     p,
     iX, iY, 
     iXmin=0, iXmax=2000,
     iYmin=0, iYmax=2000,
     iWidth=iXmax-iXmin+1,
     iHeight=iYmax-iYmin+1,
     /* 3D data : X , Y, color */
     /* number of bytes = number of pixels of image * number of bytes of color */
     iLength=iWidth*iHeight*3,/* 3 bytes of color  */
     index; /* of array */
     int iXinc, iYinc,iIncMax=6;     
   /* world ( double) coordinate = parameter plane*/
   const double ZxMin=-2.5;
   const double ZxMax=2.5;
   const double ZyMin=-2.5;
   const double ZyMax=2.5;
   /* */
   double PixelWidth=(ZxMax-ZxMin)/iWidth;
   double PixelHeight=(ZyMax-ZyMin)/iHeight;
   double Zx, Zy,    /* Z=Zx+Zy*i   */
          tempZx,
          Z0x, Z0y,  /* Z0 = Z0x + Z0y*i */
          Zx2, Zy2, /* Zx2=Zx*Zx;  Zy2=Zy*Zy  */
          //NewZx, NewZy,
          DeltaX, DeltaY,
          SqrtDeltaX, SqrtDeltaY,
          AlphaX, AlphaY,
          BetaX,BetaY, /* repelling fixed point Beta */
          AbsLambdaA,AbsLambdaB,
          ZAx,ZAy, /* attractor  ZA = ZAx+ZAy*i */
          Z_cr_x=0.0, Z_cr_y=0.0; /* critical point */
  /*  */
  int Iteration,iIteration,
  IterationMax=80,
  IterationMaxBig=1000,
  iTemp;
  /* bail-out value , radius of circle ;  */
  const int EscapeRadius=8;
 int ER2=EscapeRadius*EscapeRadius;
 double //AR=PixelWidth, /* minimal distance from attractor = Attractor Radius */
 AR2=0.001, /* proportional to period  */
 d,dX,dY; /*  distance from attractor : d=sqrt(dx*dx+dy*dy) */
 /* PPM file */
 FILE * fp;
 char *filename="fatou_4b.ppm";
 char *comment="# this is julia set for c= ";/* comment should start with # */
 const int MaxColorComponentValue=255;/* color component ( R or G or B) is coded from 0 to 255 */
 /* dynamic 1D array for 24-bit color values */    
 unsigned char *array;
 static unsigned char color[3];
 /*  ---------  find fixed points ---------------------------------*/
 /* Delta=1-4*c */
  DeltaX=1-4*Cx;
  DeltaY=-4*Cy;
  /* SqrtDelta = sqrt(Delta) */
  /* sqrt of complex number algorithm from Peitgen, Jurgens, Saupe: Fractals for the classroom */
  if (DeltaX>0)
  {
   SqrtDeltaX=sqrt((DeltaX+sqrt(DeltaX*DeltaX+DeltaY*DeltaY))/2);
   SqrtDeltaY=DeltaY/(2*SqrtDeltaX);        
   }
   else /* DeltaX <= 0 */
   {
        if (DeltaX<0)
        {
         SqrtDeltaY=sign(DeltaY)*sqrt((-DeltaX+sqrt(DeltaX*DeltaX+DeltaY*DeltaY))/2);
         SqrtDeltaX=DeltaY/(2*SqrtDeltaY);        
         }
         else /* DeltaX=0 */
         {
          SqrtDeltaX=sqrt(fabs(DeltaY)/2);
          if (SqrtDeltaX>0) SqrtDeltaY=DeltaY/(2*SqrtDeltaX);
                       else SqrtDeltaY=0;    
           }
   };
  /* Beta=(1-sqrt(delta))/2 */
  BetaX=0.5+SqrtDeltaX/2;
  BetaY=SqrtDeltaY/2;
  /* Alpha=(1+sqrt(delta))/2 */
  AlphaX=0.0;//0.5-SqrtDeltaX/2;
  AlphaY=0.0;//-SqrtDeltaY/2;
  AbsLambdaA=2*sqrt(AlphaX*AlphaX+AlphaY*AlphaY);
  AbsLambdaB=2*sqrt(BetaX*BetaX+BetaY*BetaY);
  /* -- find attractor  ZA = ZAx+ZAy*i ---------------*/
  /* Z = 0 = critical point */
  Zx=0.0;
  Zy=0.0;
  Zx2=Zx*Zx;
  Zy2=Zy*Zy;
  /* */
  for (Iteration=0;Iteration<IterationMaxBig && ((Zx2+Zy2)<ER2);Iteration++)
                   {
                       Zy=2*Zx*Zy + Cy;
                       Zx=Zx2-Zy2 +Cx;
                       Zx2=Zx*Zx;
                       Zy2=Zy*Zy;
                   };
  
  ZAx=Zx;
  ZAy=Zy;
  /*----*/
  //period= GivePeriod( Cx,Cy,ZAx, ZAy,ER2,AR2 ); 
  /* --------------- info -------------------------*/
  printf(" C= (%f , %f) \n",Cx,Cy);
  printf(" Fixed points : \n");
  printf(" Beta= %f , %f\n",BetaX,BetaY);
  printf(" Alpha= %f, %f\n",AlphaX,AlphaY);
  printf(" abs(Lambda (Alpha))= %f\n",AbsLambdaA);
  printf(" abs(lambda(Beta))= %f\n",AbsLambdaB);
  printf(" Limit distances  : \n");
  printf(" AR2= %f\n",AR2);
  printf(" ER2= %d\n",ER2);
  printf(" Attractor : \n");
  printf(" ZA= %f , %f\n",ZAx,ZAy);
  printf(" period= %d\n",period);
  /*--------------------------------------------------------*/
  array = malloc( iLength * sizeof(unsigned char) );
   if (array == NULL)
   {
     fprintf(stderr,"Could not allocate memory");
     getchar();
     return 1;
   }
   else 
   {         
     printf(" I'm working. Wait \n");
     /* fill the data array with white points */       
     for(index=0;index<iLength-1;++index) array[index]=255;
     /* ---------------------------------------------------------------*/
  for(iY=0;iY<iYmax;++iY)
     {
         Z0y=ZyMin + iY*PixelHeight; /* reverse Y  axis */
            if (fabs(Z0y)<PixelHeight/2) Z0y=0.0; /*  */    
        for(iX=0;iX<iXmax;++iX)
        {    /* initial value of orbit Z0 */
               Z0x=ZxMin + iX*PixelWidth;
             /* Z = Z0 */
             Zx=Z0x;
             Zy=Z0y;
             Zx2=Zx*Zx;
             Zy2=Zy*Zy;
            /* */
            for (Iteration=0;Iteration<IterationMax && ((Zx2+Zy2)<ER2);Iteration++)
                   {
                       Zy=2*Zx*Zy + Cy;
                       Zx=Zx2-Zy2 +Cx;
                       Zx2=Zx*Zx;
                       Zy2=Zy*Zy;
                   };
          iTemp=((iYmax-iY-1)*iXmax+iX)*3;        
          /* compute  pixel color (24 bit = 3 bajts) */
          if (Iteration==IterationMax)
                   { /*  interior of Filled-in Julia set  =  */
                         /* Z = Z0 */
                         Zx=Z0x;
                         Zy=Z0y;
                         Zx2=Zx*Zx;
                         Zy2=Zy*Zy;
                          dX=Zx-AlphaX;
                           dY=Zy-AlphaY;
                           d=dX*dX+dY*dY;
                           for (iIteration=0;iIteration<IterationMax && (d>AR2);iIteration++)
                       {
                           Zy=2*Zx*Zy + Cy;
                           Zx=Zx2-Zy2 +Cx;
                           Zx2=Zx*Zx;
                           Zy2=Zy*Zy;
                           dX=Zx-AlphaX;
                           dY=Zy-AlphaY;
                           d=dX*dX+dY*dY;
                       };
                       /* iLSM */
                     if (iIteration==IterationMax) 
                          { // points of interior which did not reached attractor = solid red
                            array[iTemp]=255; /* Red*/
                            array[iTemp+1]=0;  /* Green */ 
                            array[iTemp+2]=0;/* Blue */
                          }
                          else
                          { /* components of filled Julia set */
                           iIteration%=period;// modulo period
                           GiveColorFromList6(iIteration ,color);
                           array[iTemp]=color[0]; /* Red*/
                           array[iTemp+1]=color[1];  /* Green */ 
                           array[iTemp+2]=color[2];/* Blue */
                          }                      
                       }
             else /* exterior of Filled-in Julia set  */
             { /*  LSM */
               //GiveColorFromList6(Iteration ,color);
                           int i=Iteration*5;
                          {
                           array[iTemp]=(255-i)%255; /* Red*/
                           array[iTemp+1]=(215-i)%255;  /* Green */ 
                           array[iTemp+2]=(200-i)%255;/* Blue */
                           }
                     }
             /* check the orientation of Z-plane */
             /* mark first quadrant of cartesian plane*/     
             //  if (Z0x>0 && Z0y>0) array[((iYmax-iY-1)*iXmax+iX)*3]=255-array[((iYmax-iY-1)*iXmax+iX)*3];  
    }
   } 
 /* -------------------  draw special points ----------------------------*/             
 /* ---  fixed points : Alpha and Beta ---------*/
 iX=(AlphaX-ZxMin)/PixelWidth; /*translate from world to screen coordinate */
 iY=(AlphaY-ZxMin)/PixelHeight; /*  */
 /* plot  big green pixel = 2*iIncMax  pixel wide */
 for(iYinc=-iIncMax;iYinc<iIncMax;++iYinc){
   for(iXinc=-iIncMax;iXinc<iIncMax;++iXinc)
   { 
   iTemp=((iYmax-iY-1+iYinc)*iXmax+iX+iXinc)*3;                                          
   array[iTemp]=0;
   array[iTemp+1]=255;
   array[iTemp+2]=0;  
   }
 }
 /* translate from world to screen coordinate */
 iX=(BetaX-ZxMin)/PixelWidth;
 iY=(BetaY-ZyMin)/PixelHeight; /*  */
 /* plot  big red pixel = 2*iIncMax pixel wide */
 for(iYinc=-iIncMax;iYinc<iIncMax;++iYinc){
   for(iXinc=-iIncMax;iXinc<iIncMax;++iXinc)
   {  
   iTemp=((iYmax-iY-1+iYinc)*iXmax+iX+iXinc)*3;
   array[iTemp]=255;
   array[iTemp+1]=0;
   array[iTemp+2]=0;  
   }
   }          
 /* -------------- critical point ------------*/
 /* translate from world to screen coordinate */
 iX=(Z_cr_x-ZxMin)/PixelWidth;
 iY=(Z_cr_y-ZyMin)/PixelHeight; /*  */
 /* plot  big blue pixel = 2*iIncMax  pixel wide */
 for(iYinc=-iIncMax;iYinc<iIncMax;++iYinc){
   for(iXinc=-iIncMax;iXinc<iIncMax;++iXinc)
   {  
   iTemp=((iYmax-iY-1+iYinc)*iXmax+iX+iXinc)*3;
   array[iTemp]=0;
   array[iTemp+1]=0;
   array[iTemp+2]=255;  
   }
   } 
 /*----------- attracting cycle ---------------------*/
 Zx=ZAx;
 Zy=ZAy; 
 for(p=0;p<period;p++)
 {
  /* translate from world to screen coordinate */
 iX=(Zx-ZxMin)/PixelWidth;
 iY=(Zy-ZyMin)/PixelHeight; /*  */
 /* plot  big white pixel = 2*iIncMax  pixel wide */
 for(iYinc=-iIncMax;iYinc<iIncMax;++iYinc){
   for(iXinc=-iIncMax;iXinc<iIncMax;++iXinc)
   {  
   iTemp=((iYmax-iY-1+iYinc)*iXmax+iX+iXinc)*3;
   array[iTemp]=0;
   array[iTemp+1]=0;
   array[iTemp+2]=0;  
   }
   }  
   /* compute new point */
   tempZx= Zx*Zx - Zy*Zy + Cx;
   Zy = 2*Zx*Zy + Cy; 
   Zx = tempZx;
 } 
 /* ----- write the whole data array to ppm file in one step ---------------- */      
     /*create new file,give it a name and open it in binary mode  */
     fp= fopen(filename,"wb"); /* b -  binary mode */
     if (fp == NULL){ fprintf(stderr,"file error"); }
           else
           {
           /*write ASCII header to the file*/
           fprintf(fp,"P6\n %s\n %d\n %d\n %d\n",comment,iXmax,iYmax,MaxColorComponentValue);
           /*write image data bytes to the file*/
           fwrite(array,iLength ,1,fp);
           fclose(fp);
           fprintf(stderr,"file saved");
           getchar();
           }
  free(array);
  return 0;
   } /* if (array ..  else ... */
 }

Licensing

[edit]
I, the copyright holder of this work, hereby publish it under the following licenses:
w:en:Creative Commons
attribution share alike
This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
GNU head Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License.
You may select the license of your choice.

References

[edit]
  1. The fixed points and periodic orbits by E Demidov

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current15:34, 30 June 2010Thumbnail for version as of 15:34, 30 June 20102,000 × 2,000 (233 KB)Soul windsurfer (talk | contribs)smaller size
11:02, 31 May 2008Thumbnail for version as of 11:02, 31 May 200810,000 × 10,000 (3.53 MB)Soul windsurfer (talk | contribs)earlier version had errors
10:24, 31 May 2008Thumbnail for version as of 10:24, 31 May 200815,000 × 15,000 (10.33 MB)Soul windsurfer (talk | contribs)bigger size
21:21, 26 May 2008Thumbnail for version as of 21:21, 26 May 20084,000 × 4,000 (1.52 MB)Soul windsurfer (talk | contribs)better quality
10:57, 25 May 2008Thumbnail for version as of 10:57, 25 May 20082,000 × 2,000 (343 KB)Soul windsurfer (talk | contribs)better quality
10:48, 25 May 2008Thumbnail for version as of 10:48, 25 May 20082,000 × 2,000 (152 KB)Soul windsurfer (talk | contribs){{Information |Description=Filled Julia set with marked components |Source=self-made |Date= |Author= Adam majewski |Permission= |other_versions= }}

File usage on other wikis

The following other wikis use this file:

Metadata