File:Parameter plane and Mandelbrot set for f(z) = z^4 + m*z.png

From Wikimedia Commons, the free media repository
Jump to navigation Jump to search

Original file (1,000 × 1,000 pixels, file size: 31 KB, MIME type: image/png)

Captions

Captions

Add a one-line explanation of what this file represents

Summary

[edit]
Description
English: Parameter plane and Mandelbrot set for f(z) = z^4 + m*z
Date
Source Own work with help of Wolf Jung[1]
Author Adam majewski

Compare with

[edit]

C src code

[edit]
 /* 
 c program:
  1. draws Mandelbrot set for Fm(z)=z^4+m*z;
  using  escape time ( boolean and levele sets )

Adam Majewski
fraktal.republka.pl
 
 -------------------------------         
 2. technic of creating ppm file is  based on the code of Claudio Rocchini
 http://en.wikipedia.org/wiki/Image:Color_complex_plot.jpg
 create 24 bit color graphic file ,  portable pixmap file = PPM 
 see http://en.wikipedia.org/wiki/Portable_pixmap
 to see the file use external application ( graphic viewer)
 ---------------------------------

It is a console C program ( one file)
It can be compiled under :
*windows ( gcc thru Dev-C++ )
*linux and mac using gcc : 

 gcc m.c -lm -Wall
it creates a.out file. Then run it :
 ./a.out

It creates ppm file in program directory. Use file viewer to see it.







(%i1) z:zx+zy*%i;
(%o1) %i*zy+zx
(%i2) m:mx+my*%i;
(%o2) %i*my+mx
(%i3) z1:z^4+m*z;
(%o3) (%i*zy+zx)^4+(%i*my+mx)*(%i*zy+zx)
(%i4) realpart(z1);
(%o4) zy^4-6*zx^2*zy^2-my*zy+zx^4+mx*zx
(%i5) imagpart(z1);
(%o5) -4*zx*zy^3+4*zx^3*zy+mx*zy+my*zx
diff(z^4+m*z,z,1);


(%i1) diff(z^4+m*z,z,1);
(%o1) 4*z^3+m

s:to_poly_solve([4*z^3+m], [z]);
%union([z=-(%i*my+mx)^(1/3)/4^(1/3)],[z=-((sqrt(3)*%i-1)*(%i*my+mx)^(1/3))/(2*4^(1/3))],[z=((sqrt(3)*%i+1)*(%i*my+mx)^(1/3))/(2*4^(1/3))])

(%i8) b:first(s);
(%o8) [z=-(%i*my+mx)^(1/3)/4^(1/3)]

(%i18) b:rhs(b[1]);
(%o18) -(%i*my+mx)^(1/3)/4^(1/3)

(%i19) realpart(b);
(%o19) -((my^2+mx^2)^(1/6)*cos(atan2(my,mx)/3))/4^(1/3)
(%i20) imagpart(b);
(%o20) -((my^2+mx^2)^(1/6)*sin(atan2(my,mx)/3))/4^(1/3)



" z0 shall be a critical point, where the derivative is 0.
The derivative is  m + n*z^{n-1} so  z  is any {n-1}-th root of
-m/n . " Wolf Jung 

"
 I have made the changes
discussed below and it works.

1) 
In the iteration,  you have computed the new  Zy  and used it
to compute the new  Zx , where you should use the old  Zy .
Change this to
temp = ...
Zx = ...
Zy = temp

The iteration will be much faster,  if you compute  z^4  by
squaring  Z^2 :

for (Iteration=0; Iteration<IterationMax && Zx2+Zy2<ER2; Iteration++)
{  Zx2 -= Zy2; Zy2 = 2.0*Zx*Zy; //z^2
     double temp = 2.0*Zx2*Zy2 +Mx*Zy +My*Zx ;
     Zx = Zx2*Zx2 - Zy2*Zy2 - My*Zy + Mx*Zx;
     Zy = temp;
     Zx2=Zx*Zx;
     Zy2=Zy*Zy;
 };


2)
For the critical point it should be  atan2(-my, -mx)  and  Zy = +(b* ...
You have done complex conjugation instead of turning by 180°,
which -z means.

A minimal speed gain might be obtained by multiplying with the
cubic root of 1/4 instead of dividing by the cubic root of 4.

And I would write 1.0/6.0 instead of 0.16... 

Finally,  the cubic root of 4 could be in b:

a=atan2(-My,-Mx)/3.0; // atan2(-my,-mx)
b= pow(0.0625*(My*My + Mx*Mx) , 1.0/6.0);
Zx= b*cos(a);  Zy= b*sin(a);

   Best regards,

   Wolf ""






  */
 #include <stdio.h>
 #include <math.h>
 int main()
 {
          /* screen ( integer) coordinate */
        int iX,iY;
        const int iXmax = 5000; 
        const int iYmax = 5000;
        /* world ( double) coordinate = parameter plane*/
        double Mx,My;
        const double MxMin=-2.4;
        const double MxMax=2.4;
        const double MyMin=-2.4;
        const double MyMax=2.4;
        /* */
        double PixelWidth=(MxMax-MxMin)/iXmax;
        double PixelHeight=(MyMax-MyMin)/iYmax;
        /* color component ( R or G or B) is coded from 0 to 255 */
        /* it is 24 bit color RGB file */
        const int MaxColorComponentValue=255; 
        FILE * fp;
        char *filename="lsm50000.ppm";
        char *comment="# ";/* comment should start with # */
        static unsigned char color[3];
        /* Z=Zx+Zy*i  ;   Z0 = 0 */
        double Zx, Zy;
        double Zx2, Zy2; /* Zx2=Zx*Zx;  Zy2=Zy*Zy  */
        /*  */
        int Iteration;
        const int IterationMax=10000;
        /* bail-out value , radius of circle ;  */
        const double EscapeRadius=3;
        double ER2=EscapeRadius*EscapeRadius;
        double a, b, temp;
        unsigned char ucTemp;
        
        /*create new file,give it a name and open it in binary mode  */
        fp= fopen(filename,"wb"); /* b -  binary mode */
        /*write ASCII header to the file*/
        fprintf(fp,"P6\n %s\n %d\n %d\n %d\n",comment,iXmax,iYmax,MaxColorComponentValue);
        
        /* compute and write image data bytes to the file*/
        for(iY=0;iY<iYmax;iY++)
        {
             My=MyMin + iY*PixelHeight;
             if (fabs(My)< PixelHeight/2) My=0.0; /* Main antenna */
             printf(" %d \n", iY);
             for(iX=0;iX<iXmax;iX++)
             {         
                        Mx=MxMin + iX*PixelWidth;
                        /* initial value of orbit = critical point Z:  (-m/4)^(1/3)=0  */
                        a=atan2(-My,-Mx)/3.0; // atan2(-my,-mx)
                        b= pow(0.0625*(My*My + Mx*Mx) , 1.0/6.0);
                        Zx=  b*cos(a);
                        Zy=  b*sin(a);
			//printf(" %f ; %f \n", Zx,Zy);
                        //printf("Zx = %f ; Zy = %f \n", Zx, Zy);
                        Zx2=Zx*Zx;
                        Zy2=Zy*Zy;
                        /* */
                        for (Iteration=0;Iteration<IterationMax && ((Zx2+Zy2)<ER2);Iteration++)
                        {
                            temp =-4.0*Zx*Zy*Zy2  +4.0*Zx2*Zx*Zy +Mx*Zy +My*Zx ; // -4*zx*zy^3 +4*zx^3*zy +mx*zy +my*zx
                            Zx=Zy2*Zy2 -6.0*Zx2*Zy2 +Zx2*Zx2 -My*Zy + Mx*Zx; // zy^4 -6*zx^2*zy^2 -my*zy +zx^4+ mx*zx
                            Zy=temp;
 			    //
			    Zx2=Zx*Zx;
                            Zy2=Zy*Zy;
                        };
                        /* compute  pixel color (24 bit = 3 bajts) */
                        if (Iteration<IterationMax)
                        { /* exterior of Mandelbrot set  */
                          ucTemp = 255 - 100*((unsigned char)(255*Iteration/IterationMax)) ;
                           color[0]=ucTemp; /* Red*/
                             color[1]=ucTemp;  /* Green */ 
                             color[2]=ucTemp;/* Blue */                          
                        }
                  
                        else /*  interior of Mandelbrot set  */
                           {
                             color[0]=0;
                           color[1]=0;
                           color[2]=0;     
                           };
                         /*write color to the file*/
                        fwrite(color,1,3,fp);
                }
        }
        fclose(fp);
        return 0;
 }

References

[edit]
  1. Wolf Jung - home page

Licensing

[edit]
I, the copyright holder of this work, hereby publish it under the following licenses:
w:en:Creative Commons
attribution share alike
This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
GNU head Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License.
You may select the license of your choice.

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current18:14, 9 February 2013Thumbnail for version as of 18:14, 9 February 20131,000 × 1,000 (31 KB)Soul windsurfer (talk | contribs){{Information |Description ={{en|1=Parameter plane and Mandelbrot set for f(z) = z^4 + m*z }} |Source ={{own}} |Author =Adam majewski |Date =2013-02-09 |Permission = |other_versions = }}

File usage on other wikis

The following other wikis use this file:

Metadata