File:Sine of distance from origin.png
From Wikimedia Commons, the free media repository
Jump to navigation
Jump to search
Sine_of_distance_from_origin.png (800 × 589 pixels, file size: 144 KB, MIME type: image/png)
File information
Structured data
Captions
DescriptionSine of distance from origin.png |
A 3D surface plot of the sine of distance from the origin: . This represents the displacement for a point source in 2D, with no attenuation due to distance. |
|||
Date | ||||
Source |
Self-Made with Mathematica This diagram was created with Mathematica. |
|||
Author | Inductiveload | |||
Permission (Reusing this file) |
|
Mathematical Function Plot | |
---|---|
Description | Sine of the distance from the origin |
Equation | |
Co-ordinate System | Cartesian |
X Range | -2π .. 2π |
Y Range | -2π .. 2π |
Mathematica Code
[edit]Please be aware that at the time of uploading (21:24, 13 June 2007 (UTC)), this code may take a significant amount of time to execute on a consumer-level computer. |
This uses Chris Hill's antialiasing code to average pixels and produce a less jagged image. The original code can be found here. |
\!\(gr = Plot3D[\[IndentingNewLine]Sin[Sqrt[x^2 + y^2]], \[IndentingNewLine]{x, \(-2\)\ Pi, 2 Pi}, \[IndentingNewLine]{ y, \(-2\)\ Pi, 2 Pi}, \[IndentingNewLine]PlotPoints -> 600, \[IndentingNewLine]Mesh -> False, \[IndentingNewLine]BoxRatios -> {4, 4, 1}, \[IndentingNewLine]Axes -> True, \[IndentingNewLine]Boxed \ -> True, \[IndentingNewLine]AxesLabel -> {"\<x\>", "\<y\>", "\<u\>"}, \[IndentingNewLine]Ticks -> {\[IndentingNewLine]{\ \[IndentingNewLine]{\(-2\) Pi, \(-2\) π, 0.01, {AbsoluteThickness[4]}}, \[IndentingNewLine]{\(- Pi\), \(-π\), 0.01, {AbsoluteThickness[4]}}, \[IndentingNewLine]{0, 0, 0.01, {AbsoluteThickness[4]}}, \[IndentingNewLine]{Pi, π, 0.01, { AbsoluteThickness[ 4]}}, \[IndentingNewLine]{2 Pi, 2 π, 0.01, {AbsoluteThickness[4]}}\[IndentingNewLine]}, \ \[IndentingNewLine]{\[IndentingNewLine]{\(-2\) Pi, \(-2\) π, 0.01, {AbsoluteThickness[ 4]}}, \[IndentingNewLine]{\(-Pi\), \(-π\), 0.01, {AbsoluteThickness[ 4]}}, \[IndentingNewLine]{0, 0, 0.01, { AbsoluteThickness[4]}}, \[IndentingNewLine]{Pi, π, 0.01, \ {AbsoluteThickness[4]}}, \[IndentingNewLine]{2 Pi, 2 π, 0.01, { AbsoluteThickness[ 4]}}\[IndentingNewLine]}, \ \[IndentingNewLine]{\[IndentingNewLine]{\(-1\), \(-1\), 0.01, {AbsoluteThickness[4]}}, \[IndentingNewLine]{0, 0, 0.01, {AbsoluteThickness[ 4]}}, \[IndentingNewLine]{1, 1, 0.01, { AbsoluteThickness[4]}}\[IndentingNewLine]}\[IndentingNewLine]}, \ \[IndentingNewLine]TextStyle -> {FontSize -> 40}, \[IndentingNewLine]BoxStyle -> {AbsoluteThickness[4]}, \ \[IndentingNewLine]ImageSize -> 200, \[IndentingNewLine]]\[IndentingNewLine]\ \[IndentingNewLine] aa[gr_] := Module[{siz, kersiz, ker, dat, as, ave, is, ar}, \[IndentingNewLine]is = ImageSize /. Options[gr, \ ImageSize]; \[IndentingNewLine]ar = AspectRatio /. Options[gr, AspectRatio]; \[IndentingNewLine]If[\(! NumberQ[is]\), is = 288]; \ \[IndentingNewLine]kersiz = 4; \[IndentingNewLine]img = \ ImportString[ExportString[gr, "\<PNG\>", ImageSize -> \((is\ kersiz)\)], "\<PNG\>"]; \[IndentingNewLine]siz = Reverse@\(Dimensions[img[\([1, 1]\)]]\)[\([{1, 2}]\)]; \[IndentingNewLine]ker = Table[N[1/ kersiz\^2], {kersiz}, {kersiz}]; \[IndentingNewLine]dat = N[img[\([ 1, 1]\)]]; \[IndentingNewLine]as = Dimensions[ dat]; \[IndentingNewLine]ave = Partition[Transpose[\(Flatten[ListConvolve[ker, dat[\([All, All, #]\)]]] &\) /@ Range[as[\([3]\)]]], as[\([2]\)] - kersiz + 1]; \[IndentingNewLine]ave = Take[ave, Sequence @@ \((\({1, \(Dimensions[ave]\)[\([#]\)], kersiz} &\) /@ Range[Length[Dimensions[ ave]] - 1])\)]; \ \[IndentingNewLine]Show[Graphics[Raster[ave, {{0, 0}, siz/ kersiz}, {0, 255}, ColorFunction -> RGBColor]], PlotRange -> {{0, siz[\([1]\)]/kersiz}, {0, siz[\([2]\)]/ kersiz}}, ImageSize -> is, AspectRatio -> ar]\[IndentingNewLine]]\[IndentingNewLine] finalgraphic = aa[gr]\)
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 21:19, 13 June 2007 | 800 × 589 (144 KB) | Inductiveload (talk | contribs) | {{Information |Description=A 3D surface plot of <math>u=\sin \left( \sqrt{x^2 + y^2} \right). This represents the displacement for a point source in 2D, with no attenuation due to distance. |Source=Self-Made with Mathematica {{Mathemetica}} |Date=13/06/2 |
You cannot overwrite this file.
File usage on Commons
The following page uses this file:
File usage on other wikis
The following other wikis use this file:
- Usage on en.wikibooks.org
- Usage on es.wikipedia.org
- Usage on it.wikipedia.org
- Usage on sr.wikipedia.org