File:Surface integral illustration.png
From Wikimedia Commons, the free media repository
Jump to navigation
Jump to search
Size of this preview: 800 × 550 pixels. Other resolutions: 320 × 220 pixels | 640 × 440 pixels | 1,024 × 704 pixels | 1,164 × 800 pixels.
Original file (1,164 × 800 pixels, file size: 79 KB, MIME type: image/png)
File information
Structured data
Captions
File:Surface integral illustration.svg is a vector version of this file. It should be used in place of this PNG file when not inferior.
File:Surface integral illustration.png → File:Surface integral illustration.svg
For more information, see Help:SVG.
|
Summary
[edit]DescriptionSurface integral illustration.png |
العربية: تعريف التكامل السطحي يعتمد على تقسيم السطح لأجزاء متناهية في الصغر.
Català: La definició de les integrals de superfície descansa en la divisió de la superfície en petits elements de superfície.
English: The definition of surface integral relies on splitting the surface into small surface elements. Figure 1: The definition of surface integral relies on splitting the surface into small surface elements. Each element is associated with a vector dS of magnitude equal to the area of the element and with direction normal to the element and pointing outward.
Esperanto: La difino de surfaca integralo surbaze de disdivido de la surfaco en malgrandajn pecojn.
Español: Ilustración de una superficie curvada, inmersa en , orientable y con borde; sobre la que se ha dibujado un conjunto de líneas coordenadas ortoganles. La definición de las integrales de superficie descansa en la división de la superficie en pequeños elementos de superficie.
Italiano: La definizione di integrale di superficie consiste nel suddividere una superficie in parti infinitesime tanto da essere considerata piana.
ქართული: სურათი 1: ზედაპირული ინტეგრალის განმარტება გულისხმობს ზედაპირის დაყოფას (უსასრულოდ) მცირე ელემენტებად. თითოეული ასეთი ელემენტი ასოცირდება dS ვექტორთან, რომლის სიდიდე ელემენტის ფართობის ტოლია, ხოლო მიმართულება ელემენტის გარე ნორმალის პარალელურია.
ភាសាខ្មែរ: និយមន័យនៃអាំងតេក្រាលផ្ទៃដោយការពុះចែកផ្ទៃជាចំនែកផ្ទៃតូចៗ.
Polski: Figure 1: The definition of surface integral relies on splitting the surface into small surface elements. Each element is associated with a vector dA of magnitude equal to the area of the element and with direction normal to the element and pointing outward.
Shqip: Figura 1: Përcaktimi i integralit të sipërfaqes bazohet në ndarjen e sipërfaqes në elemente të vogla sipërfaqësore. Çdo element lidhet me një vektor dA me madhësi të barabarte me sipërfaqen e zonës së elementit dhe me drejtimin normal me elementin dhe i drejtuar për nga jashtë. Figure 1: Percaktimi i integralit te siperfaqes mbeshtet tek fakti qe ne mund ta ndajme siperfaqen ne elemente siperfaqesh te vogla. Cdo element lidhet me nje vektor dS me madhesi te njejte dhe te barabarte me siperfaqen e elementit dhe me drejtim perpendikular me elementin dhe i drejtuar nga jashte.
Українська: Визначення поверхневого інтегралу спирається на розбиття поверхні на малі елементи.
中文:圖一:面積分的定義需要把面分成小的面積元。每個元素跟一個向量dA聯繫,該向量的大小等於面積元的面積,而方向則是跟面積元垂直並向外。. 面积分的定义依赖于将曲面细分成小的面积元。. |
Date | Unknown date |
Source |
This diagram was created with MATLAB. |
Author | Unknown authorUnknown author |
Licensing
[edit]Public domainPublic domainfalsefalse |
I, the copyright holder of this work, release this work into the public domain. This applies worldwide. In some countries this may not be legally possible; if so: I grant anyone the right to use this work for any purpose, without any conditions, unless such conditions are required by law. |
% An illustration of the surface integral.
% It shows how a surface is split into surface elements.
function main ()
% the function giving the surface and its gradient
f=inline('10-(x.^2+y.^2)/15', 'x', 'y');
BoxSize=5; % surface dimensions are 2*BoxSize x 2*BoxSize
M = 10; % M x M = the number of surface elements into which to split the surface
N=100; % N x N = number of points in each surface element
spacing = 0.1; % spacing between surface elements
H=2*BoxSize/(M-1); % size of each surface element
gridsize=H/N; % distance between points on a surface element
figure(1); clf; hold on; axis equal; axis off;
for i=1:(M-1)
for j=1:(M-1)
Lx = -BoxSize + (i-1)*H+spacing; Ux = -BoxSize + (i )*H-spacing;
Ly = -BoxSize + (j-1)*H+spacing; Uy = -BoxSize + (j )*H-spacing;
% calc the surface element
XX=Lx:gridsize:Ux;
YY=Ly:gridsize:Uy;
[X, Y]=meshgrid(XX, YY);
Z=f(X, Y);
% plot the surface element
surf(X, Y, Z, 'FaceColor','red', 'EdgeColor','none', ...
'AmbientStrength', 0.3, 'SpecularStrength', 1, 'DiffuseStrength', 0.8);
end
end
view (-18, 40); % viewing angle
camlight headlight; lighting phong; % make nice lightning
% save to file
print('-dpng', '-r200', 'Surface_integral_illustration.png');
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 03:43, 22 April 2007 | 1,164 × 800 (79 KB) | Oleg Alexandrov (talk | contribs) | {{Information |Description= |Source= |Date= |Author= }} | |
03:42, 22 April 2007 | 2,400 × 1,800 (104 KB) | Oleg Alexandrov (talk | contribs) | {{Information |Description= |Source= |Date= |Author= }} | ||
03:33, 22 April 2007 | 800 × 536 (47 KB) | Oleg Alexandrov (talk | contribs) | {{Information |Description= |Source= |Date= |Author= }} {{PD-self}} |
You cannot overwrite this file.
File usage on Commons
The following page uses this file:
File usage on other wikis
The following other wikis use this file:
- Usage on en.wikipedia.org
- Usage on en.wikibooks.org
- Usage on en.wikiversity.org
- Usage on mk.wikipedia.org
- Usage on sr.wikipedia.org