File:VFPt capacitor-round-plate.svg

From Wikimedia Commons, the free media repository
Jump to navigation Jump to search

Original file (SVG file, nominally 800 × 600 pixels, file size: 28 KB)

Captions

Captions

Add a one-line explanation of what this file represents

Summary

[edit]
Description
English: Electric field of simple parallel plate capacitor. The capacitor consists of two round plates. The field is accurately computed for a uniform charge distribution on each plate, but therefore the potential on each plate is not exactly constant.
Date
Source Own work
Author Geek3
Other versions

Slightly different field configurations:

SVG development
InfoField
 
The SVG code is valid.
 
This plot was created with VectorFieldPlot.
Source code
InfoField

Python code

# paste this code at the end of VectorFieldPlot 1.6
doc = FieldplotDocument('VFPt_capacitor-round-plate', width=800, height=600, commons=True)
l = 4.5
d = 1.5
plates = [{'x0':-l/2., 'y0':d/2., 'x1':l/2., 'y1':d/2., 'Q':1.},
          {'x0':-l/2., 'y0':-d/2., 'x1':l/2., 'y1':-d/2., 'Q':-1.}]
field = Field({'charged_discs':
    [[p['x0'], p['y0'], p['x1'], p['y1'], p['Q']] for p in plates]})

def startpath(t):
    # take an oval with stright lines and half-cirles around one plate
    tt = (t%1) * (2 * l + pi * d)
    if tt <= l*0.5:
        return sc.array([tt, d])
    elif tt <= l*0.5 + pi/2.*d:
        phi = (tt - l*0.5) / (d/2.)
        return sc.array([l*0.5 + d*0.5*sin(phi), d*0.5 + d*0.5*cos(phi)])
    elif tt <= l*1.5 + pi/2.*d:
        return sc.array([l - (tt - pi/2.*d), 0.])
    elif tt <= l*1.5 + pi*d:
        phi = (tt - l*1.5) / (d/2.)
        return sc.array([-l*0.5 + d*0.5*sin(phi), d*0.5 + d*0.5*cos(phi)])
    else:
        return sc.array([tt - (l*2. + pi*d), d])
dstartpath = lambda t: (startpath(t+1e-6) - startpath(t-1e-6)) / 2e-6
FieldSum = lambda t0, t1: ig.quad(lambda t:
    sc.cross(field.F(startpath(t)), dstartpath(t)), t0, t1)[0]
Ftotal = FieldSum(0, 1)
def startpos(s):
    t = op.brentq(lambda t: FieldSum(0, t) / Ftotal - s, 0, 1)
    return startpath(t)

# plot field lines
n = 22
for i in range(n):
    p0 = startpos((0.5 + i) / n)
    line = FieldLine(field, p0, directions='both')
    doc.draw_line(line, arrows_style={'dist':2, 'min_arrows':1})

# plot round plates
D = 0.055
lw = 0.01
nsign = n
plus = 'M 0,-0.02 v 0.04 M -0.02,0 h 0.04'
minus = 'M -0.02,0 h 0.04'
defs = doc.draw_object('g', {})
grad = doc.draw_object('linearGradient', {'id':'grad',
    'x1':str(l/2.), 'x2':str(-l/2.), 'y1':'0', 'y2':'0',
    'gradientUnits':'userSpaceOnUse'}, defs)
for o, c, a in ((0, '#000', 0.3), (0.3, '#999', 0.2),
                (0.8, '#fff', 0.25), (1, '#fff', 0.65)):
    doc.draw_object('stop', {'id':'grad',
         'offset':str(o), 'stop-color':c, 'stop-opacity':str(a)}, grad)

for p in plates:
    M = 0.5 * (sc.array([p['x0'], p['y0']]) + sc.array([p['x1'], p['y1']]))
    R = sc.array([p['x1'], p['y1']]) - M
    a = atan2(R[1], R[0])
    if p['Q'] > 0:
        col = '#f00'
        sign = plus
    else:
        col = '#12f'
        sign = minus
    transform = 'translate({:.6g},{:.6g})'.format(M[0], M[1])
    transform += ' rotate({:.6g})'.format(degrees(a))
    doc.draw_object('rect', {'x':-vabs(R)-lw/2., 'width':2*vabs(R)+lw,
        'y':-D, 'height':2*D, 'transform':transform,
        'style':'fill:{:s}; stroke:none'.format(col)})
    doc.draw_object('rect', {'x':-vabs(R)-lw/2., 'width':2*vabs(R)+lw,
        'y':-D, 'height':2*D, 'transform':transform,
        'style':'fill:url(#grad); stroke:#000; stroke-width:{:.6g}'.format(lw)})
    for i in range(nsign):
        pos = M + R * (2 * (i + 0.5) / nsign - 1)
        doc.draw_object('path', {'d':sign,
        'transform':'translate({:.6g},{:.6g})'.format(*pos),
        'style':'fill:none; stroke:#000; stroke-width:{:.6g}; '.format(2*lw) +
        'stroke-linecap:square'})

doc.write()

Licensing

[edit]
I, the copyright holder of this work, hereby publish it under the following license:
w:en:Creative Commons
attribution share alike
This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current19:50, 15 October 2017Thumbnail for version as of 19:50, 15 October 2017800 × 600 (28 KB)Geek3 (talk | contribs)User created page with UploadWizard

Metadata